
ACM Programming Contest - All
Problems

Dixie State University

March 28, 2015

Do NOT turn this page until

10:00 am Mountain Time!

Rules

1. Each team consists of up to three students.

2. Each team may use one provided computer.

3. Teams may use any printed references.

4. Teams may not use any electronic aids, including the internet. The help system built
in to your programming environment is okay. Official documentation websites such as
docs.python.org are okay.

5. University, high school and beginner team categories compete only within their category.

6. All solutions must be written in C++ or Java. Python is also permitted for high school
and beginner teams, and for university teams where no member has completed CS 3005
or any other course that requires C++.

7. The team with the most correct solutions wins.

8. Ties will be broken using a time score:

(a) Each time a team submits a correct solution, the number of minutes that have
elapsed since the beginning of the competition is added to the time score.

(b) For each incorrect solution submitted, a 20 minute penalty is added to the time
score, but only if the team eventually submits a correct solution to that problem.

(c) Multiple penalties will be added for multiple incorrect solutions to the same prob-
lem.

9. The input for each problem comes from standard input. This goes by the names cin

and STDIN in C++, System.in in Java, and sys.stdin in Python. Other methods may
also exist for receiving input from standard input for each language.

10. The output for each problem should be sent to standard output. This goes by the
names cout and STDOUT in C++, System.out in Java, and sys.stdout in Python.
Other methods may also exist for sending output to standard out for each language.

11. The output of submitted solutions must exactly match the output of the reference
solution, down to the last character. Whitespace differences matter. Any other output,
including debugging output, may cause an otherwise correct solution to be marked as
incorrect. Each problem statement with example input and output shows exactly where
newline characters are placed and where spaces are appropriate.

12. Solutions have a 10 second time limit. Any solution that runs longer than that will be
considered incorrect.

13. The university and high school contests begin at 10:00 am and ends at 3:00 pm. The
beginner contest begins at 12:00 pm and ends at 3:00 pm.

2

Contents

1 Sample Problem 5

2 Box 7

3 Death Valley 9

4 Spelling Bee 11

5 Rock Paper Scissors 13

6 Factorial 15

7 Melody 17

8 Topswops 19

9 Collatz Conjecture 21

10 Biorhythms 23

11 Pseudo Random Numbers 25

12 Card Shuffle 27

13 Devlali 29

14 Anagram Dictionaries 31

15 Figurate 33

16 Pascal Triangle Art 35

17 Penney 37

3

4

1 Sample Problem

Write a program to read a number N and a word, then repeat the word N times.

The first line of input the program will be a number 1 ĺ N ĺ 100, which specifies how many
times to repeat the word. The second line of input will contain a single word.

The output from the program will contain N lines. Each line will contain the word read from
the input.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

5ê

wumpusê

Sample Output

wumpusê

wumpusê

wumpusê

wumpusê

wumpusê

5

6

2 Box

This program must draw a solid filled box using the * character.

The input to the program will be two numbers on the same line. The first number 3 ĺW ĺ 9
is the width of the box. The second number 3 ĺ H ĺ 9 is the height of the box.

The output of the program will have H lines, each with W * characters.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

4 6ê

Sample Output

****ê

****ê

****ê

****ê

****ê

****ê

7

8

3 Death Valley

A town in Death Valley has a water tank that holds 10,000 gallons of water. Assume that
the water tank is full. Calculate the number of weeks the town will be able to use water if no
more water is put into the tank.

The input to the program will be a number on each line 1 ĺ G ĺ 10000, the number of gallons
that the town uses per week. The last line will have G “ 0 and should not be processed.

The output of the program will have one line per input line. Each line will display the number
of full weeks the town can use water at the given rate.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

1750ê

1000ê

4325ê

0ê

Sample Output

5ê

10ê

2ê

9

10

4 Spelling Bee

Write a program to help the judges at a spelling bee. You will check to see if two words are
spelled the same, and report the result.

The first line of input the program will be a number 1 ĺ N ĺ 100, which specifies the number
of checks to make. There will follow N lines, with two words on each line, separated by a
space.

The output from the program will contain N lines. The each line will either say “WORD1
and WORD2 are the same”, or “WORD1 and WORD2 are different”, depending on whether
the words match or not. WORD1 and WORD2 should be replaced with the words to be
compared.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

3ê

FRED BARNEYê

WINDOWS WINDOWSê

LINUX LINUSê

Sample Output

FRED and BARNEY are differentê

WINDOWS and WINDOWS are the sameê

LINUX and LINUS are differentê

11

12

5 Rock Paper Scissors

Write a program to determine the winner of a series of games of Rock-Paper-Scissors. In this
game, Rock wins Scissors, Scissors wins Paper and Paper wins Rock. If both players choose
the same option, the game is a tie.

The first line of input the program will be a number 1 ĺ N ĺ 100, which specifies the number
games to judge. There will follow N lines, with two words on each line, separated by a space.
Each word will be Rock, Paper or Scissors. Player A is the first word, and player B is the
second word.

The output from the program will contain N lines. The each line will say “A wins”, “B wins”,
or “tie”.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

3ê

Rock Paperê

Paper Rockê

Scissors Scissorsê

Sample Output

B winsê

A winsê

tieê

13

14

6 Factorial

If N is an integer number greater than 0, the factorial of N is defined as N ˆpN ´ 1qˆ pN ´
2q ˆ pN ´ 2q ˆ ...ˆ 1.

For example, the factorial of 4 is 4ˆ 3ˆ 2ˆ 1 “ 24.

Write a program to calculate the factorial of positive integers.

The first line of input to the program will be a number 1 ĺ K ĺ 20. This will be followed by
K lines. Each of the lines will contain one integer, 1 ĺ N ĺ 12.

The output of the program will have K lines, one for each N in the input. The output will
contain the factorial of N .

Note: The ê symbol in the examples below represents a newline character.

Sample Input

3ê

4ê

1ê

12ê

Sample Output

24ê

1ê

479001600ê

15

16

7 Melody

Max and Greta are exo-linguists traveling the galaxy learning languages. They are building
a translator application to help Earthlings communicate with the people of Giwdul.

In the Giwdul language, each word is a melody of up to 16 notes. The actual notes in a word
aren’t as important as whether each note has a frequency lower, the same, or higher than
the previous note in the word. For example, if two consecutive notes have frequencies of 440
and 698 this is an Up transition. Another pair of notes may have frequencies of 587 and 622,
which is also an Up transition. While another pair of notes may have frequencies of 622 and
440, which is a Down transition.

To translate from a sequence of frequencies into a sequence of characters to use in a dictionary,
we use U for up transitions, D for down transitions, R for repeat, and * for the first note in
the word. For example, given a word with these 7 notes: 493 466 830 830 830 659 659 we
would spell the word *DURRDR.

Max and Greta already have a machine that listens to a melody and records the frequencies
in the word as numbers. They also have a dictionary that translates the character words, like
*DURRDR into English. Help them complete the task of creating a translator by writing a
program that receives a list of frequencies and translates it into a list of characters as described
above.

The first line of input to the program contains a single integer 1 ĺ N ĺ 1000 that specifies
the number of lines remaining in the input. All other lines specify a single word. These lines
begin with a number 1 ĺM ĺ 16 that specifies the number of notes in the word, followed by
M numbers. The numbers on the line are separated by spaces.

The output for the program contains N lines, with one set of characters per line. The
characters are those created using the translation process described above.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

4ê

7 493 466 830 830 830 659 659ê

16 698 784 493 493 493 659 740 659 659 440 440 440 587 740 740 830ê

2 554 523ê

10 784 622 622 622 466 659 466 740 784 784ê

Sample Output

*DURRDRê

*UDRRUUDRDRRUURUê

*Dê

*DRRDUDUURê

17

18

8 Topswops

Maddison and Gata are reading extra material on permutations for their Discrete Mathematics
course. They came across an interesting card game from the 1970s, called topswops. They
want to understand it better, so they want to be able to run simulations of the game for many
different situations.

Topswops is played with a deck of cards numbered sequentially from 1 to N . The cards are
randomly shuffled. Then, the top card’s number is examined, let’s call it M . The top M
cards are removed from the deck and placed in reverse order, then added to the top of the
deck. The game repeats until the card numbered 1 reaches the top of the deck.

For example, in a 5 card game, the shuffle may produce a deck with cards ordered 3 4 2 5
1. A single turn would extract the top 3 cards and reverse their order, putting them back on
top to produce the deck 2 4 3 5 1.

Help Maddison and Gata with this problem by creating a program to count the number of
turns for a topswops game to complete given the initial order of the deck.

The first line of input will contain the number of cards in the deck 1 ĺ N ĺ 20. The second
line of input will contain the number of decks to solve 1 ĺ P ĺ 1000. The following P lines
will contain N numbers separated by spaces. Each of these is the shuffled order of the deck.

The output will contain P lines with one number per line. This is the number of turns until
the 1 card moves to the top of the deck.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

5ê

4ê

3 4 2 5 1ê

2 5 4 1 3ê

1 4 3 2 5ê

5 2 4 3 1ê

Sample Output

4ê

6ê

0ê

1ê

19

20

9 Collatz Conjecture

Machiko and Gair are the first humans to return to the moon in 40 years. The astronauts
discover rows of piles of rocks on the far side. Curious, they count the number of rocks in
each of the piles in several rows. They discover that any pile with an even number of rocks is
followed by a pile with half as many rocks. However, piles with an odd number of rocks are
followed by a pile with one more than three times as many (that’s 3ˆ n` 1). Each row ends
with a pile of 1 rock.

For example, one row starts with a pile of 3 rocks. The next pile has 10 rocks, followed by 5,
16, 8, 4, 2, and finally 1 rock. So, there are 7 piles after the initial pile.

They get tired of counting the piles rocks and ask you to write a computer program that will
take the number of rocks in the first pile of a row and then tell how many more piles there
are in that row.

The input to your program is one positive integer per line, 1 ĺ N ĺ 1000000 representing the
number of rocks in the first pile of a row. The input will have no more than 100 lines. The
last line will have N “ 0 and should not be processed.

The output from your program is two numbers per line, separated by a single space. The
first number is the number from the input, N . The second number is the count of how many
more piles of rocks there would be on the row, not counting the first pile.

Note that some individual piles of rocks may have more than 232 rocks in them.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

17ê

3ê

10ê

12ê

1ê

951652ê

0ê

Sample Output

17 12ê

3 7ê

10 6ê

12 9ê

1 0ê

951652 170ê

21

22

10 Biorhythms

Mason and Gene are learning all the culture of the 1970s from episodes of the TV show
”CHiPs.” They found a means of fortune telling called biorhythms. They decide to create an
app that will allow people of today to receive this pseudo wisdom.

In the biorhythm theory, everyone has two cycles that begin on the day they are born. Each
cycle has an associated power, ranging from 100 to -100. One’s best days are those when
both cycles have high positive powers.

The power, P , of a rhythm of length, L days, on a particular day of one’s life, D, is calculated
using this formula: P “ t100ˆ sinp2πD{Lqu. In Python π can be found in math.pi. In C++
it can be found with atan(1)*4.

For example, for a rhythm with L “ 25, on the 1010th day of your life (D “ 1010), the power
is P “ 58. Note that the fractional part of the number is truncated, not rounded. Casting a
floating point number to the int type will truncate it.

Mason and Gene already have a calculator for finding the day in someone’s life, given their
birthday, and a random number generator for picking the length of biorhythm cycles. Help
them complete the app by calculating the rhythm powers for users, given L1, L2 and D.

The input to your program will begin with one line with two integer numbers, the length of
the two cycles, L1 and L2. The rest of the input will be one integer number per line, the
day in the user’s life, D. The last line in the file will have D “ 0. This line should not be
processed. The inputs will obey these limits: 10 ĺ L1, L2 ĺ 100, 0 ĺ D ĺ 50000. There will
not be more than 1000 values of D.

The output from your program will have one line per D value in the input. Each line will
show three integer numbers, D, P1, and P2, with a single space between them and no space
at the end of the line.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

28 23ê

1010ê

187ê

9842ê

0ê

Sample Output

1010 43 -51ê

187 -90 73ê

9842 0 -51ê

23

24

11 Pseudo Random Numbers

Martha and Goldie are excited to have been accepted as players on a game show where they
get to choose briefcases with money in them and accept or deny the offer made to them by
the host.

Practicing for the show, they are creating a computer program to help them play the game
many times to understand the probabilities involved. They have most of the program planned,
but they need a pseudo-random number generator.

A pseudo-random number generator is used to create a sequence of numbers that appear to
have the properties of actual random numbers. The usual process is to start with an initial
number, called the seed, and apply a mathematical transformation to generate the next
number. Then the same transformation is used on the second number, generating another.

Early in the days of electronic computers, the middle-square method was used to generate
pseudo-random numbers. In this method the seed number is squared and the middle digits
of the square are extracted as the next number in the sequence.

For example, for 4 digit numbers, and a seed of 5234, the square is 27394756, an 8 digit
number. The middle 4 digits are 3947, the next number. The following number in the
sequence is 5788. If the squared number doesn’t have enough digits, then add 0s on the left
until it does. For example, if the seed is 0763, then the squared number is 582169. We add
two 0s on the left to get 00582169, and the next number is 5821.

Help Martha and Goldie generate pseudo-random numbers for their program, using the
middle-square method.

The input will contain 3 lines, with one number per line. The first number, N , is the number
of digits that you want to have in your newly created pseudo-random numbers. N will be an
even number in the range 2 ĺ N ĺ 8. The second number, 1 ĺ M ĺ 1000, is the number of
pseudo-random numbers you need to generate. The third number, S, is the seed number.

The output will contain M lines, with one number per line, in the order created using the
middle-square method. The first output number is the first number after the input seed. If
the output number has leading 0 digits, do not display them. If the output number is 0, do
display it.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

4ê

5ê

5234ê

Sample Output

3947ê

5788ê

5009ê

900ê

8100ê

25

Sample Input

2ê

4ê

62ê

Sample Output

84ê

5ê

2ê

0ê

26

12 Card Shuffle

Megan and Grant are considering careers as magicians. They have been able to acquire several
broken card shuffling machines. Each shuffler produces the same shuffle every time. They
plan to use the shufflers in a trick where they feed the same deck of cards through the shuffler
until the top card in the deck is returned to the top. They just need to know how many times
to feed the cards through for each different shuffler.

Help them plan for their trick by counting how many times a deck needs to be passed through
a particular shuffler, until the top card returns to the top.

The first line of input to your program will be a single integer, N , the number of cards in the
deck. The second line of input will be N numbers, indicating the new position of each card
after 1 shuffle. The card positions are numbered 0 through N ´ 1. The number of cards will
obey this constraint: 1 ĺ N ĺ 100.

For example, a shuffle description for 4 cards might be 3 1 0 2. This indicates the top card,
with index 0 will be moved to the last position 3, the second card will stay in position 1, the
third card will move to the top, or position 0, and the last card will move to position 2.

The output from your program will be a single line containing one integer number. This is
the number of shuffles until the original top card returns to the top. Note that a single card
deck still needs to be fed through the shuffler at least once for the trick.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

5ê

1 2 3 4 0ê

Sample Output

5ê

Sample Input 2

5ê

2 4 3 0 1ê

Sample Output 2

3ê

27

28

13 Devlali

Milo and Geoffrey are traveling through small towns in India. In Devlali, they find information
about the mathematical concept of “generated numbers” and “self numbers”.

To understand this idea take a number, such as 54. Add its digits to its value, 5`4`54 “ 63.
Since 63 can be generated by this process, it is a generated number. However, 31 is a self
number, because there is no number that can generate it with this process. Other numbers
can be generated by more than one number. For example, 1 ` 0 ` 0 ` 100 “ 101 and
9` 1` 91 “ 101. So, 101 is called a junction number.

Milo and Geoffrey want to apply this concept to large set of numbers, classifying each of them
as self, junction, or generated numbers. Help them, by writing a program to determine the
type of a number.

The first line of the input will have a single integer, 1 ĺ N ĺ 1000, the number of lines that
follow. For each following line, there will be one number, 1 ĺM ĺ 10000.

The output will consist of one line per input numberM . The line will beM followed be a single
space, followed by “self”, “junction”, or “generated”. The word depends on the classification
of M .

Note: The ê symbol in the examples below represents a newline character.

Sample Input

6ê

63ê

31ê

101ê

9934ê

9993ê

9994ê

Sample Output

63 generatedê

31 selfê

101 junctionê

9934 junctionê

9993 selfê

9994 generatedê

29

30

14 Anagram Dictionaries

Milly and Gloria are avid word game players. Some of their favorites are Ruzzle and Words
with Friends. They realize that these games can be played better if one understands anagrams.

An anagram is a word that is produced by rearranging the letters in another word. For
example, ACT and CAT are anagrams, as are TORSO and ROOST.

Help Milly and Gloria create an anagram dictionary. This is produced by reordering each
word’s letters alphabetically, to produce an “alphabetical anagram”. The alphabetical ana-
gram for TORSO and ROOST is OORST. Each word that has the same alphabetical anagram
is listed alphabetically on the line after the alphabetical anagram. The line for OORST would
contain “OORST ROOST TORSO”. The alphabetical anagrams are listed in alphabetical or-
der in the anagram dictionary.

For example, if the words in our dictionary were ACT, BARE, BEAR, CAT, and FREE, the
anagram dictionary would have lines for ABER, ACT, and EEFR. Where ABER would list
BARE and BEAR as anagrams; ACT would list ACT and CAT as anagrams; and EEFR
would list FREE as the anagram.

The input to your program will be a number, N , on the first line, followed by N lines, with
one word per line. The number of words will be limited by 1 ĺ N ĺ 11000. Each word will
contain only upper case letters, A through Z.

The output of your program must be one line per alphabetical anagram, with the alphabetical
anagram first, followed by a single space, followed by each of the anagrams, sorted alphabet-
ically, each separated by a single space. There must not be a space at the end of the line.
If the alphabetical anagram is itself a word, the word is repeated. The output lines must be
sorted alphabetically by alphabetical anagram.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

5ê

ACTê

BAREê

BEARê

CATê

FREEê

Sample Output

ABER BARE BEARê

ACT ACT CATê

EEFR FREEê

31

32

15 Figurate

Marge and Gunther are extraterrestrial archaeologists studying secret images sent back by
the Mars rovers Spirit and Opportunity. They show markings like the following:

7dddddd ˝dddDd4d

It’s a series of triangles, squares, pentagons, and hexagons, with each polygon followed by a
number of ds. To encode these markings in text files, Marge and Gunter write each collection
of markings as numbers on a line. The preceding markings are recorded as 4 6 6 4 3 5 1 3 1.
The first number describes the number of polygons in the marking. Each pair of numbers
after that represent the number of sides in the polygon and the number of ds that follow it.

Due to other evidence, they know that ancient Martians were fans of figurate numbers. These
are numbers that can be found by counting the number of dots in regular polygons of various
sizes. For example, the triangular, square, pentagonal and hexagonal numbers are found by
counting the number of dots in each successively larger polygon.

Figurate numbers can also be calculated by summing a series. These are the formulas for the
nth T riangluar, Square, P entagonal, and Hexagonal numbers:

T pnq “
řn

i“1 i “ 1` 2` 3` ...` n

Spnq “
řn

i“1 2 ˚ i´ 1 “ 1` 3` 5` ...` 2 ˚ n´ 1

P pnq “
řn

i“1 3 ˚ i´ 2 “ 1` 4` 7` ...` 3 ˚ n´ 2

Hpnq “
řn

i“1 4 ˚ i´ 3 “ 1` 5` 9` ...` 4 ˚ n´ 3

Marge and Gunther interpret the Martian markings by treating each polygon followed by n
ds as the nth figurate number for the appropriate polygon. For example, ˝ddd is interpreted
as Sp3q “ 1` 3` 5 “ 9, the 3rd square number.

Next, they add all numbers from a collection of markings. For example,
7dddddd ˝dddDd4d is Hp6q ` Sp3q ` P p1q ` T p1q “ 66` 9` 1` 1 “ 77.

Finally, Marge and Gunter take consecutive runs of the numbers acquired by this process
and treat them as ASCII values. They are amazed to find the resulting text reads as English

33

sentences.

Marge and Gunter want to interpret the large messages revealed in the images from Mars,
but are tired of doing the calculations by hand. Help them by writing a program to decipher
the ancient Martian messages. They had a bunch of students transcribe the markings into
the format described here.

The first line of input consists of a number, 1 ĺ K ĺ 150, 000, which specifies the number
of lines to follow. Each following line has the format of a number, 1 ĺ M ĺ 10, followed by
M pairs of numbers. Each of these pairs has a first number, P , and a second number, N . P
describes the number of sides on the polygon, and N is the number in that sequence. These
lines match the description given earlier in this document.

The program output must compute a single character from each of the K lines, using the
process described above. These characters are concatenated into one string, then displayed
verbatim, with a newline character following them.

In the first example below, note that last line indicates the third triangle number, 10. This
is the ASCII code for the newline character. Thus, the output has the newline character
described in the input, plus the following newline character.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

15ê

4 6 6 4 3 5 1 3 1ê

2 4 9 4 4ê

4 6 7 4 4 6 2 6 1ê

6 6 7 3 6 6 1 5 1 5 1 6 1ê

4 6 7 3 4 3 2 3 1ê

2 4 10 3 4ê

3 4 5 3 3 4 1ê

2 3 11 5 2ê

2 3 13 6 2ê

4 5 8 4 4 5 2 3 1ê

5 6 7 6 2 4 1 3 1 5 1ê

3 6 7 3 5 4 2ê

5 5 8 3 3 4 1 3 1 6 1ê

5 3 14 6 2 6 1 3 1 3 1ê

1 3 4ê

Sample Output

Martin Gardnerê

ê

Bonus Sample Input

13ê

4 6 6 4 2 5 1 3 1ê

2 4 10 4 1ê

3 6 7 4 4 6 1ê

4 6 7 6 3 3 1 6 1ê

4 5 8 5 3 6 2 6 1ê

3 3 7 3 2 3 1ê

4 4 8 3 2 4 1 3 1ê

3 4 9 3 5 5 1ê

5 3 14 6 2 5 1 4 1 5 1ê

4 3 14 6 2 6 1 4 2ê

3 3 13 5 3 6 1ê

3 3 7 4 2 5 1ê

1 3 4ê

Bonus Sample Output

The output for this sample is not given, but
should make sense when you find it.

34

16 Pascal Triangle Art

Matilda and Gwyneth are creating an art collection for their first mathematical art show.
They recently learned about a method to create pictures using a numerical sequence called
Pascal’s triangle. This sequence is usually written in the shape of a triangle. Here are the
first five rows of Pascal’s triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Each row is created by adding neighboring pairs on the row above. For this purpose, you can
imagine a temporary 0 on each side of the row.

It may be worth noting that the largest numbers in the Nth row of the triangle require N
bits in a binary representation.

Help Matilda and Gwyneth by making an ASCII art image by making a program to create
some number of rows in the triangle, replacing each number with text characters. The char-
acters will be chosen based on whether the number is evenly divisible by a selected number.

The input will contain two lines, with one integer per line. The first number, 1 ĺ N ĺ 100 is
how many lines of the triangle to generate. The second number, 2 ĺM ĺ 10, is the modulus.

The output will contain N lines. Each line will be a representation of the row in Pascal’s
triangle, with the first row on top. The first row will be proceeded by N ´ 1 spaces; the
second row by N ´ 2 spaces; and so forth. Each number in a row will be represented by two
asterisk characters or two space characters, with no spaces between numbers. If the number
in the row is not evenly divisible by M , then use the asterisks, otherwise use the spaces.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

8ê

2ê

Sample Output

**ê

****ê

** **ê

********ê

** **ê

**** ****ê

** ** ** **ê

****************ê

35

Sample Input

25ê

5ê

Sample Output

**ê

****ê

******ê

********ê

**********ê

** **ê

**** ****ê

****** ******ê

******** ********ê

********************ê

** ** **ê

**** **** ****ê

****** ****** ******ê

******** ******** ********ê

******************************ê

** ** ** **ê

**** **** **** ****ê

****** ****** ****** ******ê

******** ******** ******** ********ê

**ê

** ** ** ** **ê

**** **** **** **** ****ê

****** ****** ****** ****** ******ê

******** ******** ******** ******** ********ê

**ê

36

17 Penney

Maria and Gwen are vacationing in Paris, France. They are approached by a vendor on the
street to play and bet on a two player coin flipping game, called Penney, after its inventor
Walter Penney.

Each player chooses a pattern of three consecutive coin flips, from the 8 possible patterns:
HHH, HHT, HTH, HTT, TTT, TTH, THT, and THH. (H = heads, T = tails). A coin is
repeatedly flipped to generate a sequence of heads and tails. The first of the two patterns to
show up wins.

For example, player 1 may choose HTH and player 2 may choose HHT. The coin is flipped
until one of those patterns appear. After 6 flips the sequence HTTHTH is obtained, and
player 1 wins. Notice the HTH at the end, and no HHT anywhere.

After listening to the game description, they see that the game is a confidence trick. So,
of course, they agree to play, but demand that they choose their pattern after the vendor
chooses.

Help Maria and Gwen win this game by writing a program that allows them to choose which
of two triplets has a better percentage of winning. You may want to use a game simulation
to calculate the results of the 8ˆ 8 “ 64 possible comparisons.

The first line of input will be a single number 1 ĺ N ĺ 64, the number of problems to follow.
There will be N more lines, each with one problem. Each problem will have two 3-letter
patterns of H and T, separated by a space.

The output will have N lines, one for each problem in the input. For each problem the output
will be the pattern that has the higher probability of winning this game. If both patterns
have equal probability, the output should be the word TIE.

Note: The ê symbol in the examples below represents a newline character.

Sample Input

4ê

HHT THTê

THT TTHê

HHH TTTê

HTT HTTê

Sample Output

HHTê

TTHê

TIEê

TIEê

37

	Sample Problem
	Box
	Death Valley
	Spelling Bee
	Rock Paper Scissors
	Factorial
	Melody
	Topswops
	Collatz Conjecture
	Biorhythms
	Pseudo Random Numbers
	Card Shuffle
	Devlali
	Anagram Dictionaries
	Figurate
	Pascal Triangle Art
	Penney

